skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Becker, Erich"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We review the mechanism of multi-step vertical coupling (MSVC) via secondary and higher-order gravity waves (GWs), and its relevance for observed GW perturbations and the circulation in the upper mesosphere and thermosphere. Since the momentum deposition following the breaking or dissipation of a GW packet is localized in space and time, it leads to an imbalance in the ambient flow which in turn results in the generation of secondary or higher-order GWs. This local “body force” (LBF) mechanism is essential for MSVC. We argue that small-scale secondary GWs resulting directly from GW instability form a macro-turbulent cascade that leads to the LBF. We present a simple scale analysis supporting this interpretation with respect to observed GW spectra. Several examples of MSVC are reviewed. These include 1) an explanation of the observed persistent GWs and prevailing eastward winds in the winter mesopause region at middle to high latitudes via secondary GWs, 2) evidence that many of the daytime traveling ionospheric disturbances in the F region during winter and low geomagnetic activity are driven by higher-order GWs from MSVC, 3) the dependence of MSVC during wintertime on the strength of the polar vortex, and 4) the secondary GW disturbances in the thermosphere and ionospheric that were triggered by the Tonga volcanic eruption on January 15, 2022. Furthermore, we describe the GW-resolving whole-atmosphere model that was primarily used in corresponding studies of MSVC, and we discuss some open questions. 
    more » « less
  2. We analyze an episode of strong mountain wave (MW) activity over the western US from 9 to 12 January 2017 using the HIgh Altitude mechanistic General Circulation Model. We find that medium‐scale MWs were generated by strong eastward flow over the Sierra Nevada and the Rocky Mountains. During this time, part of the stratospheric polar vortex jet extended from the western US to eastern Canada such that the MWs propagated into the lower mesosphere where they dissipated from westward vertical wind shear. This resulted in secondary gravity waves (GWs) that propagated into the lower thermosphere where tertiary GWs having concentric ring structures were created. With increasing altitude in the thermosphere, certain propagation directions were highlighted as a result of the dissipation induced by the tidal winds. At 260 km, we find eastward propagation during local morning over the northeastern US, equatorward propagation around local noon over the southern US, westward propagation during local afternoon over the northwestern US, and poleward propagation over Canada after local midnight. In addition, the model shows equatorward propagating larger‐scale GWs over Canada from remote sources around local noon. The simulated regional GW‐mean flow interaction patterns are consistent with multi‐step vertical coupling triggered by the MWs. The traveling ionospheric disturbances (TIDs) during the MW event are simulated with the ionospheric model SAMI3. The simulated GWs and TIDs are consistent with the medium‐to‐large‐scale TIDs observed over the continental US in GPS TEC data. 
    more » « less
  3. Abstract We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large‐scale higher‐order, thermospheric GWs. We find that the amplitudes of the secondary/higher‐order GWs from sources below the polar vortex jet are exponentially magnified. The higher‐order, thermospheric GWs have concentric ring, arc‐like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher‐order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengthsλH ∼ 200 − 2,200 km, horizontal phase speedscH ∼ 165 − 260 m/s, and periodsτr ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large‐scale, higher‐order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid‐thermosphere at ∼8–16 LT withλH ∼ 3,000 km andcH ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large‐scale, higher‐order thermospheric GWs via multi‐step vertical coupling. 
    more » « less
  4. Abstract We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large‐scale higher‐order, thermospheric GWs. We find that the amplitudes of the secondary/higher‐order GWs from sources below the polar vortex jet are exponentially magnified. The higher‐order, thermospheric GWs have concentric ring, arc‐like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher‐order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengthsλH ∼ 200 − 2,200 km, horizontal phase speedscH ∼ 165 − 260 m/s, and periodsτr ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large‐scale, higher‐order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid‐thermosphere at ∼8–16 LT withλH ∼ 3,000 km andcH ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large‐scale, higher‐order thermospheric GWs via multi‐step vertical coupling. 
    more » « less
  5. Abstract In Vadas et al. (2024,https://doi.org/10.1029/2024ja032521), we modeled the atmospheric gravity waves (GWs) during 11–14 January 2016 using the HIAMCM, and found that the polar vortex jet generates medium to large‐scale, higher‐order GWs in the thermosphere. In this paper, we model the traveling ionospheric disturbances (TIDs) generated by these GWs using the HIAMCM‐SAMI3 and compare with ionospheric observations from ground‐based Global Navigation Satellite System (GNSS) receivers, Incoherent Scatter Radars (ISR) and the Super Dual Auroral Radar Network (SuperDARN). We find that medium to large‐scale TIDs are generated worldwide by the higher‐order GWs from this event. Many of the TIDs over Europe and Asia have concentric ring/arc‐like structure, and most of those over North/South America have planar wave structure and occur during the daytime. Those over North/South America propagate southward and are generated by higher‐order GWs from Europe/Asia which propagate over the Arctic. These latter TIDs can be misidentified as arising from geomagnetic forcing. We find that the higher‐order GWs that propagate to Africa and Brazil from Europe may aid in the formation of equatorial plasma bubbles (EPBs) there. We find that the simulated GWs, TIDs and EPBs agree with EISCAT, PFISR, GNSS, and SuperDARN measurements. We find that the higher‐order GWs are concentrated at N at 200 km, in agreement with GOCE and CHAMP data. Thus the polar vortex jet is important for generating TIDs in the northern winter ionosphere via multi‐step vertical coupling through GWs. 
    more » « less
  6. Abstract The moving solar terminator (ST) generates atmospheric disturbances, broadly termed solar terminator waves (STWs). Despite theoretically recurring daily, STWs remain poorly understood, partially due to measurement challenges near the ST. Analyzing Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) data from NASA's Ionospheric Connection Explorer (ICON) observatory, we present observations of STW signatures in thermospheric neutral winds, including the first reported meridional wind signatures. Seasonal analysis reveals STWs are most prominent during solstices, when they intersect the ST about ∼20° latitude from the equator in the winter hemisphere and have phase fronts inclined at a ∼40° angle to the ST. We also provide the first observed STW altitude profiles, revealing large vertical wavelengths above 200 km. Comparing these observations to four different models suggests the STWs likely originate directly or indirectly from waves from below 97 km. STWs may play an under‐recognized role in the daily variability of the thermosphere‐ionosphere system, warranting further study. 
    more » « less
  7. Abstract Atmospheric predictability from subseasonal to seasonal time scales and climate variability are both influenced critically by gravity waves (GW). The quality of regional and global numerical models relies on thorough understanding of GW dynamics and its interplay with chemistry, precipitation, clouds, and climate across many scales. For the foreseeable future, GWs and many other relevant processes will remain partly unresolved, and models will continue to rely on parameterizations. Recent model intercomparisons and studies show that present-day GW parameterizations do not accurately represent GW processes. These shortcomings introduce uncertainties, among others, in predicting the effects of climate change on important modes of variability. However, the last decade has produced new data and advances in theoretical and numerical developments that promise to improve the situation. This review gives a survey of these developments, discusses the present status of GW parameterizations, and formulates recommendations on how to proceed from there. 
    more » « less